EN FR
EN FR


Section: New Results

A new model for polychotomous data

Multinomial logistic regression is one of the most popular models for modelling the effect of explanatory variables on a subject choice between a set of specified options. This model has found numerous applications in machine learning, psychology or economy. Bayesian inference in this model is non trivial and requires, either to resort to a Metropolis-Hastings algorithm, or rejection sampling within a Gibbs sampler. In [19] , we propose an alternative model to multinomial logistic regression. The model builds on the Plackett-Luce model, a popular model for multiple comparisons. We show that the introduction of a suitable set of auxiliary variables leads to an Expectation-Maximization algorithm to find Maximum A Posteriori estimates of the parameters. We further provide a full Bayesian treatment by deriving a Gibbs sampler, which only requires to sample from highly standard distributions. We also propose a variational approximate inference scheme. All are very simple to implement. One property of our Plackett-Luce regression model is that it learns a sparse set of feature weights. We compare our method to sparse Bayesian multinomial logistic regression and show that it is competitive, especially in presence of polychotomous data.